STM32/STM32MP157AAA3/Test/CM4/Core/Src/main.c
2025-06-25 16:57:23 +08:00

635 lines
16 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define AP3216C_ADDR_W (0x3C)
#define AP3216C_ADDR_R (0x3D)
#define AP3216CCMD_ALS_L (0x0C)
#define AP3216CCMD_ALS_H (0x0D)
#define SEG_ADDR (0x60)
//#define SEG_ADDR (0x70)
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint8_t Light_Switch = 0;
uint8_t Light_Mod = 0;
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart4;
/* USER CODE BEGIN PV */
uint8_t Seg_Point[8] = {0,0,0,0,0,0,0,0};
uint8_t Seg_Buf[8] = {10,10,10,10,10,10,10,10};
uint8_t Seg_Char[12] =
{
0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x00,0x40 //共阴 0-9,全灭 和 -
//0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff,0xB0 //共阳 0-9,全灭 和 -
};
uint8_t Seg_Pos = 0;
uint16_t Seg_Slow_Down = 0;
uint8_t Key_Slow_Down,Key_Val,Key_Old,Key_Down,Key_Up;
uint8_t ALS_H,ALS_L,AP3216C_Start = 0x03,AP3216C_Reset = 0x04;
uint16_t ALS = 0,Light_Slow_Down;
uint8_t Light_Level,Light_Level_Hand = 5,Light_Level_Auto;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_UART4_Init(void);
/* USER CODE BEGIN PFP */
//重写printf函数使用UART4输出
int __io_putchar(int ch)
{
HAL_UART_Transmit(&huart4,(uint8_t*)&ch,1,10);
return ch;
}
//读取AP3216C的ALS数据
int AP3216CALS_Read()
{
uint16_t temp = 0;
//AP3216C初始化
HAL_I2C_Mem_Write(&hi2c1,AP3216C_ADDR_W,0x00,1,&AP3216C_Reset,1,100);
HAL_Delay(150);
HAL_I2C_Mem_Write(&hi2c1,AP3216C_ADDR_W,0x00,1,&AP3216C_Start,1,100);
HAL_Delay(150);
//读取ALS数据
HAL_I2C_Mem_Read(&hi2c1,AP3216C_ADDR_R, AP3216CCMD_ALS_L, 1,&ALS_L,1, 100);
HAL_Delay(150);
HAL_I2C_Mem_Read(&hi2c1,AP3216C_ADDR_R, AP3216CCMD_ALS_H, 1,&ALS_H,1, 100);
HAL_Delay(150);
temp = ((ALS_H << 8) | ALS_L);
return temp;
}
//读取按键状态
int Key_Read(void)
{
uint8_t temp = 0;
if(HAL_GPIO_ReadPin(GPIOE,GPIO_PIN_9) == GPIO_PIN_RESET) temp = 3;
else if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2) == GPIO_PIN_RESET) temp = 4;
else if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1) == GPIO_PIN_RESET) temp = 5;
else if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0) == GPIO_PIN_RESET) temp = 6;
return temp;
}
//按键处理
void Key_Proc()
{
//延时消抖,下面相似代码同理
if(Key_Slow_Down) return;
Key_Slow_Down = 1;
Key_Val = Key_Read();
Key_Down = Key_Val & (Key_Old ^ Key_Val);
Key_Up = ~Key_Val & (Key_Old ^ Key_Val);
Key_Old = Key_Val;
if(Key_Down == 3)
{
Light_Switch = !Light_Switch;
}
if(Light_Switch == 1)
{
if(Key_Down == 6)
Light_Mod = !Light_Mod;
if(Key_Down == 4)
{
Light_Level_Hand++;
if(Light_Level_Hand >= 11)
Light_Level_Hand = 10;
}
else if(Key_Down == 5)
{
Light_Level_Hand--;
if(Light_Level_Hand <= 0)
Light_Level_Hand = 1;
}
}
}
//灯光处理
void Light_Proc()
{
if(Light_Slow_Down) return;
Light_Slow_Down = 1;
if(Light_Mod == 1)
{
Light_Level_Auto = AP3216CALS_Read() / 10 % 10;
//如果ALS数据小于5则灯光亮度为ALS数据+5保证自动调节的灯光亮度不会过低
if(Light_Level_Auto <= 5)
Light_Level = Light_Level_Auto + 5;
else
Light_Level = Light_Level_Auto;
}
else
//手动调节灯光亮度
Light_Level = Light_Level_Hand;
//根据灯光开关状态,设置灯光亮度
if(Light_Switch)
{
switch(Light_Level)
{
case 0:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 0);
break;
case 1:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 100);
break;
case 2:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 200);
break;
case 3:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 300);
break;
case 4:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 400);
break;
case 5:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 500);
break;
case 6:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 600);
break;
case 7:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 700);
break;
case 8:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 800);
break;
case 9:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 900);
break;
case 10:
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 1000);
break;
}
}
else
//关闭灯光
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, 0);
//输出所有状态
printf("Open_Status:%d Mod:%d Auto_Light:%d Hand_Light:%d Light_Level:%d\n",Light_Switch,Light_Mod,Light_Level_Auto,Light_Level_Hand,Light_Level);
}
//数码管显示
void Seg_Disp(uint8_t Wela, uint8_t Dula, uint8_t IsPoint)
{
uint8_t seg_data = Seg_Char[Dula]; // 使用临时变量
if(IsPoint)
seg_data |= 0x80; // 设置小数点
else
seg_data &= 0x7F; // 清除小数点
HAL_I2C_Mem_Write(&hi2c1,SEG_ADDR,0x10+Wela, 1, &seg_data, 1, 100);
}
//数码管显示处理
void Seg_Proc()
{
if(Seg_Slow_Down) return;
Seg_Slow_Down = 1;
Seg_Buf[0] = 10;
Seg_Buf[1] = Light_Switch;
Seg_Buf[2] = 10;
Seg_Buf[3] = Light_Mod;
Seg_Buf[4] = 10;
Seg_Buf[5] = Light_Level_Hand % 10;
Seg_Buf[6] = 10;
Seg_Buf[7] = Light_Level % 10;
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
if(IS_ENGINEERING_BOOT_MODE())
{
/* Configure the system clock */
SystemClock_Config();
}
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_UART4_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_Base_Start_IT(&htim3);
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
Key_Proc();
Light_Proc();
Seg_Proc();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** RCC Clock Config
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
|RCC_CLOCKTYPE_PCLK5;
RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_HSI;
RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_HSI;
RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV1;
RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV1;
RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV1;
RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV1;
RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x10707DBC;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 63;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 999;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 63;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 999;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief UART4 Initialization Function
* @param None
* @retval None
*/
static void MX_UART4_Init(void)
{
/* USER CODE BEGIN UART4_Init 0 */
/* USER CODE END UART4_Init 0 */
/* USER CODE BEGIN UART4_Init 1 */
/* USER CODE END UART4_Init 1 */
huart4.Instance = UART4;
huart4.Init.BaudRate = 115200;
huart4.Init.WordLength = UART_WORDLENGTH_8B;
huart4.Init.StopBits = UART_STOPBITS_1;
huart4.Init.Parity = UART_PARITY_NONE;
huart4.Init.Mode = UART_MODE_TX_RX;
huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart4.Init.OverSampling = UART_OVERSAMPLING_16;
huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart4) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART4_Init 2 */
/* USER CODE END UART4_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
/*Configure GPIO pins : PG2 PG0 PG1 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pin : PE9 */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */