STM32/STM32MP157AAA3/anjianzhongduan001/Drivers/STM32MP1xx_HAL_Driver/Src/stm32mp1xx_hal.c

975 lines
29 KiB
C
Raw Normal View History

2025-03-11 20:37:16 +08:00
/**
******************************************************************************
* @file stm32mp1xx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs' categories:
(+) Common HAL APIs
(+) Services HAL APIs
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32mp1xx_hal.h"
/** @addtogroup STM32MP1xx_HAL_Driver
* @{
*/
/** @defgroup HAL HAL
* @brief HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup HAL_Private_Defines HAL Private Defines
* @{
*/
/**
* @brief STM32MP1xx HAL Driver version number
*/
#define __STM32MP1xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32MP1xx_HAL_VERSION_SUB1 (0x07U) /*!< [23:16] sub1 version */
#define __STM32MP1xx_HAL_VERSION_SUB2 (0x00U) /*!< [15:8] sub2 version */
#define __STM32MP1xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32MP1xx_HAL_VERSION ((__STM32MP1xx_HAL_VERSION_MAIN << 24)\
|(__STM32MP1xx_HAL_VERSION_SUB1 << 16)\
|(__STM32MP1xx_HAL_VERSION_SUB2 << 8 )\
|(__STM32MP1xx_HAL_VERSION_RC))
#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
#define VREFBUF_TIMEOUT_VALUE (uint32_t)10 /* 10 ms */
/**
* @}
*/
/** @defgroup HAL_Private_Constants HAL Private Constants
* @{
*/
#define SYSCFG_DEFAULT_TIMEOUT 100U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Exported variables --------------------------------------------------------*/
/** @defgroup HAL_Exported_Variables HAL Exported Variables
* @{
*/
__IO uint32_t uwTick;
#if defined(CORE_CM4)
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
#else /* CA7 */
uint32_t uwTickPrio = (1UL << 4); /* Invalid PRIO */
#endif
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup HAL_Private_Functions HAL Private Functions
* @{
*/
/** @defgroup HAL_Group1 Initialization and de-initialization Functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initializes the Flash interface the NVIC allocation and initial clock
configuration. It initializes the systick also when timeout is needed
and the backup domain when enabled.
(+) De-Initializes common part of the HAL.
(+) Configure The time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief This function is used to initialize the HAL Library; it must be the first
* instruction to be executed in the main program (before to call any other
* HAL function), it performs the following:
* Configures the SysTick to generate an interrupt each 1 millisecond,
* which is clocked by the HSI (at this stage, the clock is not yet
* configured and thus the system is running from the internal HSI at 64 MHz).
* Set NVIC Group Priority to 4.
* Calls the HAL_MspInit() callback function defined in user file
* "stm32mp1xx_hal_msp.c" to do the global low level hardware initialization
*
* @note SysTick is used as time base for the HAL_Delay() function, the application
* need to ensure that the SysTick time base is always set to 1 millisecond
* to have correct HAL operation.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
/* Set Interrupt Group Priority */
#if defined (CORE_CM4)
HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
#endif
/* Update the SystemCoreClock global variable */
SystemCoreClock = HAL_RCC_GetSystemCoreClockFreq();
/* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
{
return HAL_ERROR;
}
/* Init the low level hardware */
HAL_MspInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief This function de-Initializes common part of the HAL and stops the systick.
* This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The the SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority: Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
/*Configure the Tick to have interrupt in 1ms time basis*/
#if defined (CORE_CA7)
#if defined(USE_ST_CASIS)
HAL_SYSTICK_Config(SystemCoreClock/1000);
#elif defined (USE_PL1_SecurePhysicalTimer_IRQ)
/* Stop Timer */
PL1_SetControl(0x0);
PL1_SetCounterFrequency(HSI_VALUE);
/* Initialize Counter */
PL1_SetLoadValue(HSI_VALUE/1000);
/* Disable corresponding IRQ */
IRQ_Disable(SecurePhysicalTimer_IRQn);
IRQ_ClearPending(SecurePhysicalTimer_IRQn);
/* Set timer priority to lowest (Only bit 7:3 are implemented in MP1 CA7 GIC) */
/* TickPriority is based on 16 level priority (from MCUs) so set it in 7:4 and leave bit 3=0 */
if (TickPriority < (1UL << 4))
{
IRQ_SetPriority(SecurePhysicalTimer_IRQn, TickPriority << 4);
uwTickPrio = TickPriority;
}
else
{
return HAL_ERROR;
}
/* Set edge-triggered IRQ */
IRQ_SetMode(SecurePhysicalTimer_IRQn, IRQ_MODE_TRIG_EDGE);
/* Enable corresponding interrupt */
IRQ_Enable(SecurePhysicalTimer_IRQn);
/* Kick start Timer */
PL1_SetControl(0x1);
#else
/*Set Counter Frequency */
PL1_SetCounterFrequency(HSI_VALUE);
// __set_CNTFRQ(HSI_VALUE);
/* Initialize Counter */
PL1_SetLoadValue(0x1);
// __set_CNTP_TVAL(0x1);
#endif
#endif /* CORE_CA7 */
#if defined (CORE_CM4)
if ((uint32_t)uwTickFreq == 0U)
{
return HAL_ERROR;
}
/* Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(SystemCoreClock /(1000U / uwTickFreq)) > 0U)
{
return HAL_ERROR;
}
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
return HAL_ERROR;
}
#endif /* CORE_CM4 */
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_Group2 HAL Control functions
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device identifier
(+) Get the device revision identifier
(+) Enable/Disable Debug module during SLEEP mode
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in Systick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += (uint32_t)uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
#if defined (CORE_CA7)
#if defined (USE_ST_CASIS)
return ( Gen_Timer_Get_PhysicalCount() / (HSI_VALUE/1000));
#elif defined (USE_PL1_SecurePhysicalTimer_IRQ)
/* tick is incremented in SecurePhysicalTimer_IRQ handler */
return uwTick;
#else
/* tick value directly got from 64bits CA7 register*/
if ((RCC->STGENCKSELR & RCC_STGENCKSELR_STGENSRC) == RCC_STGENCLKSOURCE_HSE)
{
return ((uint32_t)PL1_GetCurrentPhysicalValue() / (HSE_VALUE / 1000UL));
}
else
{
return ((uint32_t)PL1_GetCurrentPhysicalValue() / (HSI_VALUE / 1000UL));
}
#endif
#endif /* CORE_CA7 */
#if defined (CORE_CM4)
/* tick is incremented in systick handler */
return uwTick;
#endif /* CORE_CM4 */
}
#if defined (CORE_CM4)
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval Status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief Return tick frequency.
* @retval tick period in Hz
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
#endif
/**
* @brief This function provides accurate delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note ThiS function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay: specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while ((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
#if defined (CORE_CA7)
#elif defined (CORE_CM4)
/* Disable SysTick Interrupt */
SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
#endif
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
#if defined (CORE_CA7)
#elif defined (CORE_CM4)
/* Enable SysTick Interrupt */
SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk;
#endif
}
/**
* @brief Returns the HAL revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32MP1xx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return((DBGMCU->IDCODE) >> 16);
}
/**
* @brief Returns the device identifier.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
}
/**
* @brief Return the first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return(READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Return the second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Return the third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
/**
* @brief Enable DBG wake up on AIEC
* @retval None
*/
void HAL_EnableDBGWakeUp(void)
{
#if defined (CORE_CA7)
SET_BIT(EXTI_C1->IMR3, EXTI_IMR3_IM75);
#elif defined (CORE_CM4)
SET_BIT(EXTI_C2->IMR3, EXTI_IMR3_IM75);
#endif
}
/**
* @brief Disable DBG wake up on AIEC
* @retval None
*/
void HAL_DisableDBGWakeUp(void)
{
#if defined (CORE_CA7)
CLEAR_BIT(EXTI_C1->IMR3, EXTI_IMR3_IM75);
#elif defined (CORE_CM4)
CLEAR_BIT(EXTI_C2->IMR3, EXTI_IMR3_IM75);
#endif
}
/**
* @brief Enable the Debug Module during Domain1 SLEEP mode
* @retval None
*/
void HAL_EnableDBGSleepMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Disable the Debug Module during Domain1 SLEEP mode
* @retval None
*/
void HAL_DisableDBGSleepMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP);
}
/**
* @brief Enable the Debug Module during Domain1 STOP mode
* @retval None
*/
void HAL_EnableDBGStopMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Disable the Debug Module during Domain1 STOP mode
* @retval None
*/
void HAL_DisableDBGStopMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP);
}
/**
* @brief Enable the Debug Module during Domain1 STANDBY mode
* @retval None
*/
void HAL_EnableDBGStandbyMode(void)
{
SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Disable the Debug Module during Domain1 STANDBY mode
* @retval None
*/
void HAL_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY);
}
/**
* @brief Configure the internal voltage reference buffer voltage scale.
* @param VoltageScaling specifies the output voltage to achieve
* This parameter can be one of the following values:
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.048 V.
* This requires VDDA equal to or higher than 2.4 V.
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.5 V.
* This requires VDDA equal to or higher than 2.8 V.
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.5 V.
* This requires VDDA equal to or higher than 1.8 V.
* @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.8 V.
* This requires VDDA equal to or higher than 2.1 V.
* @retval None
*/
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
}
/**
* @brief Configure the internal voltage reference buffer high impedance mode.
* @param Mode specifies the high impedance mode
* This parameter can be one of the following values:
* @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output.
* @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance.
* @retval None
*/
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
}
/**
* @brief Tune the Internal Voltage Reference buffer (VREFBUF).
* @retval None
*/
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
}
/**
* @brief Enable the Internal Voltage Reference buffer (VREFBUF).
* @retval HAL_OK/HAL_TIMEOUT
*/
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
{
uint32_t tickstart = 0;
SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait for VRR bit */
while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == RESET)
{
if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Disable the Internal Voltage Reference buffer (VREFBUF).
*
* @retval None
*/
void HAL_SYSCFG_DisableVREFBUF(void)
{
CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
}
/**
* @brief Ethernet PHY Interface Selection either MII or RMII
* @param SYSCFG_ETHInterface: Selects the Ethernet PHY interface
* This parameter can be one of the following values:
* @arg SYSCFG_ETH_MII : Select the Media Independent Interface
* @arg SYSCFG_ETH_GMII : Select the Gigabit Media Independent Interface
* @arg SYSCFG_ETH_RGMII: Select the Gigabit Reduced Media Independent Interface
* @arg SYSCFG_ETH_RMII : Select the Reduced Media Independent Interface
* @retval None
*/
void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)
{
/* Check the parameter */
assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface));
SYSCFG->PMCCLRR = SYSCFG_PMCSETR_ETH_SEL|SYSCFG_PMCSETR_ETH_SELMII_SEL;
SYSCFG->PMCSETR = (uint32_t)(SYSCFG_ETHInterface);
}
/**
* @brief Analog Switch control for dual analog pads.
* @param SYSCFG_AnalogSwitch: Selects the analog pad
* This parameter can be one or a combination of the following values:
* @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch
* @arg SYSCFG_SWITCH_PA1: Select PA1 analog switch
* @param SYSCFG_SwitchState: Open or Close the analog switch between dual pads (
* This parameter can be one or a combination of the following values:
* @arg SYSCFG_SWITCH_PA0_OPEN
* @arg SYSCFG_SWITCH_PA0_CLOSE
* @arg SYSCFG_SWITCH_PA1_OPEN
* @arg SYSCFG_SWITCH_PA1_CLOSE
* @retval None
*/
void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState )
{
/* Check the parameter */
assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch));
assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState));
SYSCFG->PMCCLRR = SYSCFG_AnalogSwitch;
SYSCFG->PMCSETR = (uint32_t)(SYSCFG_SwitchState);
}
/**
* @brief Enables the booster to reduce the total harmonic distortion of the analog
* switch when the supply voltage is lower than 2.7 V.
* @note Activating the booster allows to guaranty the analog switch AC performance
* when the supply voltage is below 2.7 V: in this case, the analog switch
* performance is the same on the full voltage range
* @retval None
*/
void HAL_SYSCFG_EnableBOOST(void)
{
SYSCFG->PMCSETR = SYSCFG_PMCSETR_EN_BOOSTER;
}
/**
* @brief Disables the booster
* @note Activating the booster allows to guaranty the analog switch AC performance
* when the supply voltage is below 2.7 V: in this case, the analog switch
* performance is the same on the full voltage range
* @retval None
*/
void HAL_SYSCFG_DisableBOOST(void)
{
SYSCFG->PMCCLRR = SYSCFG_PMCCLRR_EN_BOOSTER;
}
/**
* @brief Enables the I/O Compensation Cell.
* @note The I/O compensation cell can be used only when the device supply
* voltage ranges from 2.4 to 3.6 V.
* @retval None
*/
void HAL_EnableCompensationCell(void)
{
#if defined(CORE_CM4)
SYSCFG->CMPENSETR = SYSCFG_CMPENSETR_MCU_EN;
#elif defined(CORE_CA7)
SYSCFG->CMPENSETR = SYSCFG_CMPENSETR_MPU_EN;
#endif
}
/**
* @brief Power-down the I/O Compensation Cell.
* @note The I/O compensation cell can be used only when the device supply
* voltage ranges from 2.4 to 3.6 V.
* @retval None
*/
void HAL_DisableCompensationCell(void)
{
#if defined(CORE_CM4)
SYSCFG->CMPENCLRR = SYSCFG_CMPENCLRR_MCU_EN;
#elif defined(CORE_CA7)
SYSCFG->CMPENCLRR = SYSCFG_CMPENCLRR_MPU_EN;
#endif
}
/**
* @brief To Enable optimize the I/O speed when the product voltage is low.
* @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
* used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
* higher than 2.5 V might be destructive.
* @param SYSCFG_HighSpeedSignal: Signal selection (TRACE, QUADSPI...)
* This parameter can be one or a combination of the following values:
* @arg SYSCFG_HIGHSPEED_TRACE_SIGNAL
* @arg SYSCFG_HIGHSPEED_QUADSPI_SIGNAL
* @arg SYSCFG_HIGHSPEED_ETH_SIGNAL
* @arg SYSCFG_HIGHSPEED_SDMMC_SIGNAL
* @arg SYSCFG_HIGHSPEED_SPI_SIGNAL
* @retval None
*/
void HAL_SYSCFG_EnableIOSpeedOptimize(uint32_t SYSCFG_HighSpeedSignal )
{
SYSCFG->IOCTRLSETR = SYSCFG_HighSpeedSignal;
}
/**
* @brief To Disable optimize the I/O speed when the product voltage is low.
* @note This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
* used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
* higher than 2.5 V might be destructive.
* @param SYSCFG_HighSpeedSignal: Signal selection (TRACE, QUADSPI...)
* This parameter can be one or a combination of the following values:
* @arg SYSCFG_HIGHSPEED_TRACE_SIGNAL
* @arg SYSCFG_HIGHSPEED_QUADSPI_SIGNAL
* @arg SYSCFG_HIGHSPEED_ETH_SIGNAL
* @arg SYSCFG_HIGHSPEED_SDMMC_SIGNAL
* @arg SYSCFG_HIGHSPEED_SPI_SIGNAL
* @retval None
*/
void HAL_SYSCFG_DisableIOSpeedOptimize(uint32_t SYSCFG_HighSpeedSignal )
{
SYSCFG->IOCTRLCLRR = SYSCFG_HighSpeedSignal;
}
/**
* @brief Code selection for the I/O Compensation cell
* @param SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell
* This parameter can be one of the following values:
* @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR)
* @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR)
* @retval None
*/
void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)
{
/* Check the parameter */
assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode));
MODIFY_REG(SYSCFG->CMPCR, SYSCFG_CMPCR_SW_CTRL, (uint32_t)(SYSCFG_CompCode));
}
/**
* @brief Code selection for the I/O Compensation cell
* @param SYSCFG_PMOSCode: PMOS compensation code
* This code is applied to the I/O compensation cell when the CS bit of the
* SYSCFG_CMPCR is set
* @param SYSCFG_NMOSCode: NMOS compensation code
* This code is applied to the I/O compensation cell when the CS bit of the
* SYSCFG_CMPCR is set
* @retval None
*/
void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
{
/* Check the parameter */
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
MODIFY_REG(SYSCFG->CMPCR, SYSCFG_CMPCR_RANSRC|SYSCFG_CMPCR_RAPSRC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
}
/**
* @brief Disable IO compensation mechanism
* E.g. before going into STOP
* @retval None
*/
void HAL_SYSCFG_DisableIOCompensation(void)
{
uint32_t pmos_val = 0;
uint32_t nmos_val = 0;
/* Get I/O compensation cell values for PMOS and NMOS transistors */
pmos_val = (__HAL_SYSCFG_GET_PMOS_CMP() >> 28);
nmos_val = (__HAL_SYSCFG_GET_NMOS_CMP() >> 24);
/* Copy actual value of SYSCFG_CMPCR.APSRC[3:0]/ANSRC[3:0] in
* SYSCFG_CMPCR.RAPSRC[3:0]/RANSRC[3:0]
*/
HAL_SYSCFG_CompensationCodeConfig(pmos_val, nmos_val);
/* Set SYSCFG_CMPCR.SW_CTRL = 1 */
HAL_SYSCFG_CompensationCodeSelect(SYSCFG_REGISTER_CODE);
/* Disable the Compensation Cell */
HAL_DisableCompensationCell();
}
/**
* @brief Enable IO compensation mechanism
* By default the I/O compensation cell is not used. However when the
* I/O output buffer speed is configured in 50 MHz mode and above, it
* is recommended to use the compensation cell for a slew rate control
* on I/O tf(IO)out/tr(IO)out commutation to reduce the I/O noise on
* the power supply.
* @note Use polling mode for timeout as code could be used on critical
* section (IRQs disabled)
* @retval HAL_StatusTypeDef value
*/
HAL_StatusTypeDef HAL_SYSCFG_EnableIOCompensation(void)
{
HAL_StatusTypeDef status = HAL_OK;
__IO uint32_t count = SYSCFG_DEFAULT_TIMEOUT * (SystemCoreClock / 20U / 1000U);
/* Set SYSCFG_CMPENSETR.MCU_EN */
HAL_EnableCompensationCell();
/* Wait SYSCFG_CMPCR.READY = 1 */
do
{
if (count-- == 0U)
{
return HAL_TIMEOUT;
}
}
while (__HAL_SYSCFG_CMP_CELL_GET_FLAG() == 0U);
/* Set SYSCFG_CMPCR.SW_CTRL = 0 */
HAL_SYSCFG_CompensationCodeSelect(SYSCFG_CELL_CODE);
return status;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/